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ABSTRACT

Multiple backscattering of pulsed light is formulated for linearly polarized incident radiation. The method
is based on the selection of a particular geometry in which the primary and nth order backscattering return

to the receiver simultaneously.

It is shown that the returned power from water clouds at a range of 1 km due to orders of scattering higher
than the second may he neglected in a collimated pulsed lidar system whose field of view is less than 10~? rad.

1. Introduction

Liou and Schotland (1971) have calculated the
secondary backscattered power and depolarization from
water clouds to investigate the effect of the higher
orders of scattering on the backscattered laser return.
They have shown that for a beam width of 10~2rad and
an incident wavelength in the visible or near visible, the
secondary backscattered power for clouds located about
1 km from the lidar is ~39%, of the primary back-
scattered power for a cloud model with mode radius
of 4 u, and ~87%, with a mode radius of 8§ u.

The purpose of the present study is to develop a

general theory of time-dependent multiple backscatter-
ing, including polarization effects, and to evaluate the
power returned from higher orders of backscattering.
The approach developed in this paper is based on
locating the source of each element of scattered light
pulse by choosing a specified geometry. For this
specified geometry, the light pulse suffering primary
and nth order backscattering returns to the collecting
aperture simultaneously.

Computations are performed for third-order back-
scattering from water clouds located 1 km from the
receiver. The results indicate that the returned power
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from water clouds due to third-order scattering is not

significant.

2. Formulation

At an instant of time, in addition to the primary back-
scattering, there may be a simultancous contribution at
the collecting aperture due to the effect of multiple
scattering. In order for mth order scattering to be
received at the collecting aperture simultaneously with
the primary backscattering, the following time restric-
tion must hold:
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where 2R, represents the round trip of the primary
pulse, z is the distance for first scattering, R,.(2>1)
denotes the distance from the nth scattering volume to
{n-+1) scattering volume, ¢ is the velocity of light,
and £, the return time.

Referring to Fig. 1, we consider a particular gecometry
such that the scattering distances 3, Ry, Rs, ..., Roos
are fixed. Then, on a time-dependent basis as discussed
by Liou and Schotland, the corresponding volume in
which this entire volume can scatter back to the receiver
at a given instant of time, is contained between two
confocal ellipsoids with two foci at O and (Y. This, of
course, is based on the assumption that the volume of
the pulse is so small that the variation of the scattering
angle may be negligible.

1f we keep locating the source of each element of the
pulscd light before (n—1) times of scattering, it is easily
seen, on a time-dependent basis, that the path of the
pulsed light scattered (#—2) times must correspond to
a shell of two spheres in which the separation of the
shell is the pulse length Ak. A similar argument may be
applied for the pulsed light scattered (r—3) times, and
so forth.

Having this particular geometry in mind, the flux
density per unit volume foreachorderofscattering, F o,
may be expressed in the general form
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where 8, is the volume scattering cross section, R.. the
photon path due to nth order of scattering, 7. the
corresponding optical thickness, and P(8,) and L(¢.)
are the phase and rotation matrices (Chandrasekhar,
1960), respectively. The scattering and azimuth angles
are 8, and ¢, respectively, while F* ™ represents the
flux density due to (n—1)th order of scattering.

From (1), R,+R, 1=constant. The flux density
scattered # times from a volume of particles, which is
found to be formed by two confocal ellipsoids, is (for
details, see Liou and Schotland, 1971)
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Fi16. 1. The physical geometry of the multiple (third-order)
backscattered radiation in a collimated pulsed light system. All
symbols are explained in the text.
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where the double summation sums up all possible energy
scattered by each i7 sub-pulse, the sub-pulses being
obtained by dividing the outgoing pulses into several
small elements from geometry, with 7 and j denoting
the number of the sub-pulses in the vertical and hori-
zontal directions, respectively. Other symbols are as
follows: Av;; is an element volume of the sub-pulse,
V.; represents the integration over the volume bounded
by two confocal ellipsoids, and F*~2 is the flux density
scattered (n—2) times on a time dependent basis. This
latter term can be written as
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As mentioned earlier, a fixed R,_» corresponds to a
complete revolution of a volume between two spheres,
and the separation of the two spheres is the length of
the pulse A% in which the top of the pulse and the base
of the pulse will return to the receiver at a given instant
of time. Thus, the differential volume is

(ll Vuf-z = R2,L_2 Singn-z(lan_-l({Bn__z{Il(ﬁn,g. (5)
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Since the flux density F*=® for the preceding order of
scattering is independent of the rotation angle ¢,_,, the
integration over ¢,_» may be taken first so that a simple
form of the flux density scattered (z—2) times may be
derived. For a linearly polarized incident beam after
integrating over azimuth angle ¢,.», (4) can be
expressed as
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Eq. (6) is a general expression for a linearly polarized
incident beam and it can be applied for orders of scat-
tering less than # and (n—1). Physically, the result
shows that there is no phase difference for two orthog-
onal electric vectors so that the state of polarization is
always linear. This is due to the ¢ integration over a
complete revolution.

If we repeatedly substitute (6) for #2> 3 into (3), and
note dV =yd¢dydz, we obtain the expression
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and the integration boundary is

}’=y(ﬂ1,R1; e ;Ian——Z;Rn—2),

z=5(us,R1; - - - ; pin—2,Rn2),

where y and z can be evaluated from geometric rela-
tionships, and Ry,Rs,...,R._2 are the fixed paths
mentioned previously.
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3. Some computations and discussions

In (6) we let #=3. After integrating over the area of
the collecting aperature and making some rearrange-
ments, the third-order power transfer function can be
obtained. An approximate calculation has been carried
out. The purpose of this calculation is to investigate the
returned power for orders of scattering higher than the
second for a vertically polarized incident beam. Assum-
ing a wavelength of 0.6943 u, a cloud height of 1000 m,
a beam width of 1072 rad, and a particle number den-
sity of 100 cmi—®, the computations were made for two
cloud models (Deirmendjian, 1964) with mode radii of
4 and 8 u. Fig. 2 represents the ratio of the approximate
third-order transfer function T¢» to the second-order
transfer function T® as a function of return time in
seconds. At a given instant of time, the third-order
backscattering is received at the collecting aperture
simultaneously with the primary and secondary back-
scattering. As shown in this figure, the probability of
the pulsed light being scattered three times and escaping
from the cloud is higher for the cloud model with mode
radius at 8 4 near the cloud base, but decreases rapidly
as the light beam penetrates deeply into the cloud. The
effect of attenuation for third-order backscattering is
much stronger than that of the secondary backscatter-
ing. On the other hand, the attenuation effect of the
second- and third-order backscattered radiation for
cloud model C4 seems to be quite similar so that the
ratio approaches an asymptotic value. In general, in
our calculations, we found the value of the third-order
power transfer function to be about one order of mag-
nitude less than that of the second-order power transfer
function, if the range is ~1 km and the concentration
is about a few hundred per cubic centimeter. Since the
second-order backscattering is only about a few percent
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F16. 2. The ratio of third- to second-order power transfer
function, as a function of return time, for two cloud models with
mode radii at 4 and 8 u. Other parameters are indicated in the
figure. )
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of the primary backscattering, it follows that the third-
order term is, for all practical purposes, negligible.

Since the same arguments and computing procedures
can be applied for the light pulse scattered more than
three times, the returned power and depolarization are
therefore negligible for orders of scattering higher than
the second. Hence, the returned power and depolariza-
tion from secondary backscattering can be considered
as an “estimation” of the total returned power and
depolarization caused by high orders of scattering from
spherically symmetrical and uniformly distributed
water drops in a collimated pulsed lidar system.
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